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Introduction

Polyoxometalates[1] (POM) are an appealing class of inor-
ganic compounds not only for synthetic chemists, who build
amazing cluster structures[2] and find an ever-growing
number of applications,[3] but also for theoreticians who
have found in POM excellent molecular models for the
study of a wide range of electronic structures. Indeed,
POMs can act as ligands encapsulating paramagnetic transi-
tion metal ions;[4] they are also electron acceptors that can
be reduced giving rise to large mixed valence clusters (™het-
eropoly blues∫ and ™heteropoly browns∫). Furthermore, the

large number of structurally-related polyoxoanions, together
with the chemical control of their nuclearity and of the
angles and distances between the metal centers, make POM
ideal objects for a detailed study of the electronic and mag-
netic interactions at the molecular level.

Model Hamiltonians (Heisenberg,[5] t�J,[6] Hubbard[7] or
Pariser±Parr±Pople[8]) are extremely useful tools that allow
to link macroscopic properties (magnetic susceptibility, spe-
cific heat) to microscopic parameters (electron transfer,
magnetic coupling, electrostatic repulsion etc.).

However, most of mixed-valence POMs are by far too
complex and a fitting of the experimental data to a theoreti-
cal model based on these effective Hamiltonians is clearly
insufficient to provide reliable values of these parameters.
Some of these systems were treated with DFT methods[9]

but their size prevents any Configuration Interaction (CI)
ab initio calculation to be performed on the whole cluster.

The aim of the present paper is to prove the efficiency of
a hybrid approach that combines model Hamiltonians per-
formed on the whole cluster with ab initio calculations of
the microscopic parameters performed on embedded frag-
ments of POM. For that purpose, we chose the appealing
case of a two-electron-reduced polyoxowolframate anion of
Keggin structure as a testing ground for this procedure. A
previous work[10] proved that very accurate values of the
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lem of electron delocalization and mag-
netic interactions in high-nuclearity
mixed valence clusters based on poly-
oxometalates. The main interactions
between the delocalized electrons of
mixed-valence polyoxometalate anions
are extracted from valence spectrosco-
py ab initio calculations on embedded
fragments. Electron transfer, magnetic
coupling and exchange transfer param-
eters between nearest and next-near-

est-neighbor metal ions, as well as the
value of the electrostatic repulsion be-
tween pairs of metal ions are deter-
mined. These parameters are intro-
duced in a model Hamiltonian that
considers the whole anion. It thus pro-
vides macroscopic properties that
should be compared with the experi-

mental data. This method is applied to
a two-electron-reduced polyoxowolfra-
mate Keggin anion. The results demon-
strate that the electron transfer pro-
cesses, combined with the Coulombic
repulsion between the ™extra∫ elec-
trons, induce a strong antiferromagnet-
ic coupling between the two delocal-
ized spins providing a definite explana-
tion of the diamagnetic properties of
these high nuclearity mixed-valence
clusters.
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electron transfer parameters can be obtained from calcula-
tions on corner-sharing WO5 pyramids embedded in a cor-
rect bath that models the main effects of the rest of the crys-
tal. It also allowed to rationalize to some point the diamag-
netism of the Keggin anion reduced by two electrons. In
view of these interesting results, the present work goes fur-
ther and determines all the main microscopic parameters
acting in the two-electron reduced Keggin polyoxotungstate
structure. These parameters are then introduced in a Hub-
bard-type Hamiltonian and the macroscopic properties of
the mixed-valence cluster are derived. Such a procedure
allows us to present a coherent view of the diamagnetic
properties of this compound through a deeper understand-
ing of the role of the microscopic interactions of the pair of
delocalized ™extra∫ electrons injected by the reduction pro-
cess.

In the next Section, the first subsection presents the prin-
ciples of extraction of the microscopic parameters from em-
bedded fragment calculations. The two types of fragments
used in this work are also described: a 4W-based fragment
permits to evaluate simultaneously the interactions between
the two types of nearest-neighbors and the next-nearest-
neighbors metal centers; 2W-based fragments allow the in-
dependent evaluation of the interactions between all pairs of
metal centers. The second subsection provides an overview
of the model Hamiltonians used in this paper and of the
way to extract the value of their parameters from ab initio
calculations. The subsequent Section is then devoted to pres-
ent the results obtained from CASSCF, CASPT2, MONO,
DDCI2 and DDCI ab initio methods described in the Com-

putational Details. Finally, in following Section, these inter-
actions are introduced as parameters of the Hubbard model
Hamiltonian that describes the whole Keggin anion. It thus
allows to revisit and rationalize the experimental diamagnet-
ism observed in the two-electron reduced polyoxotungstate
Keggin anions.

Theoretical Models

Embedded fragment calculations : Fragment spectroscopy
calculation is a widely used method that provides accurate
evaluations of the intensity of microscopic parameters be-
tween metal centers of strongly correlated materials. It con-
sists of ab initio[11,12] or DFT[13] treatments of the interac-
tions acting between the electrons and nuclei of a small frag-
ment of the crystal. This fragment is embedded in a bath of
punctual charges and total ion pseudopotentials (TIPs)[14]

adapted to reproduce the main effects of the rest of the
crystal, namely, the short-range Pauli exclusion and the
long-range Madelung potential. A correct modeling of these
effects is crucial for an accurate evaluation of the interac-
tions, particularly of the magnetic coupling.[15]

The embedding (see Figure 1) is obtained by replacing the
atoms surrounding the ab initio considered fragment by
punctual charges. It includes the remaining ions in the cen-
tral Keggin complex, as well as several shells of Keggin poly-
oxocomplexes and the corresponding hydronium counter-
cations. Its shape (which respects the local symmetry of the
compound), its size (larger than 20 ä from the center of the
fragments, it contains more than 1200 punctual charges) and
the values of the punctual charges permit to reach an accu-
rate enough modeling of the Madelung field.[10,11, 16] TIPs are
added to the charges modeling all the atoms of the first and
second shells enclosing the fragment under consideration
(about 150 centers). They allow for avoiding an excessive
polarisation of the anions of the fragment toward the punc-
tual positive charges. Evidences of the accuracy of the punc-
tual charges and TIPs to reproduce the main effects of the
rest of the crystal on the fragments are presented in second
Section in the Results and Discussion.

Abstract in French: Cet article dÿtaille une procÿdure gÿnÿra-
le qui associe l’ÿvaluation de paramõtres microscopiques et la
prÿdiction de propriÿtÿs macroscopiques. Les principales in-
teractions entre les ÿlectrons dÿlocalisÿs sur des polyoxomÿta-
lates ‡ valence mixte sont extraites ‡ partir du calcul de la
spectroscopie de valence de fragments immergÿs dans un
bain qui reproduit les principaux effets du reste du cristal sur
le fragment considÿrÿ. Nous avons extrait non seulement la
valeur du transfert ÿlectronique, du couplage magnÿtique et
du paramõtre de ™exchange-transfer∫ entre ions mÿtalliques
premiers et seconds voisins, mais encore la valeur de la rÿpul-
sion ÿlectrostatique entre les ÿlectrons dÿlocalisÿs. Ces valeurs
ont ÿtÿ introduites comme paramõtre d’un Hamiltonien
modõle qui dÿcrit le polyoxomÿtalate dans son ensemble. Les
rÿsultats fournis par cet Hamiltonien sont alors directement
comparables aux rÿsultats expÿrimentaux. Cette mÿthode a
ÿtÿ appliquÿe au cas d’un polyoxotungstÿnate de type Keggin
rÿduit par deux ÿlectrons. Nous avons alors pu montrer que
le transfert ÿlectronique induit un trõs fort couplage antiferro-
magnÿtique entre les deux ÿlectrons dÿlocalisÿs alors que les
processus de super-ÿchange n’ont aucun effet sur ce couplage.
Le trõs grand ÿcart d’ÿnergie qui en dÿcoule entre le singulet
fondamental et le premier ÿtat triplet excitÿ permet une expli-
cation dÿfinitive des propriÿtÿs diamagnÿtiques de tels com-
posÿs ‡ valence mixte.

Figure 1. Embedding of punctual charges and TIPs designed to reproduce
the main effects of the rest of the crystal on the fragments used to calcu-
late the microscopic interaction between W centers. a) Keggin anions
considered in the embedding. Around the central anion, there is a cube,
then a octahedron, both at approximately 12 ä, and at around 18 ä from
the center we can see a cuboctahedron. b) Position of the countercations
relative to the Keggin anions.
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The embedded fragments used in this work are of two
kinds, one 4W-based fragment (tetramer W4O16) and five
2W-based fragments. The W4O16 fragment contains four
corner-sharing WO5 pyramids. It allows the simultaneous
evaluation of the interactions between corner-sharing, edge-
sharing and next-nearest-neighbors (nnn) W metallic cen-
ters. It is represented in Figure 2 where the atoms denoted

as W1 and W2 belong to the same triad of edge-sharing WO6

octahedra. The pair W3±W4 is equivalent to W1±W2 and be-
longs to a triad adjacent to the triad supporting W1 and W2.
W1 and W4 belong to corner-sharing octahedra, as do the
equivalent pair W2 and W3. One can notice that the frag-
ment do not include the sixth oxo anions of the W atom co-
ordination sphere, the oxo anions that belongs the encapsu-
lated PO4 clathrate. Indeed, it has been shown that these
anions do not support any important pathway for the deloc-
alization of the unpaired electrons between nearest and
next-nearest-neighbors W ions and their effects can be accu-
rately reproduced by punctual charges and TIPs.[10] Three
dimer fragments, based on two WO5 pyramids, model the
pairs of W atoms separated by distances dIII=5.2, dIV=3.8,
and dV=3.5 ä. They permit an independent evaluation of
the interactions between nearest (distances dIV and dV) and
next-nearest-neighbors (distance dIII) W atoms, respectively.
They provide a cross-checking of the results obtained from
the 4W-based fragment and their smaller sizes allow much
quicker calculations. They are represented in Figure 3. Two
W2O9 fragments correspond to corner sharing (fragment
containing W1 and W4, distance dIV) and edge-sharing (frag-
ment containing W1 and W2, distance dV) WO6 octahedra. A
W2O10 fragment (based on W1 and W3) corresponds to nnn
WO6 octahedra. The W and O ions that pertain to the 4W-
based fragment but not to these dimer fragments are mod-
eled by punctual charges and TIPs and added to the embed-
ding. The accuracy of such a simplification is discussed in
the second Section of the Results and Discussion. Two
PW2O14 fragments permit to evaluate the electrostatic repul-
sion between the delocalised electrons when they are locat-

ed on W ions separated by a distance dI=7.3 or dII=6.3 ä.
They contain the two W atoms, the O ions of their coordina-
tion sphere and the atoms of the PO4 clathrate encapsulated
in the Keggin anion.

All the atomic coordinates are extracted from the struc-
ture of the Keggin anion determined by X-ray crystallo-
graphic study of the (H5O2

+)3 (PW12O40
3�) salts.[17] The tetra-

hedric symmetry of this compound induces the equivalence
of all the W atoms and of the interactions W1$W2 and
W3$W4 (along edge-sharing octahedra) as well as the inter-
actions W1$W4 and W2$W3 (along corner-sharing octahe-
dra) and of the interaction W1$W3 and W2$W4 between
nnn. This permits much quicker calculations, reduces the
number of independent parameters and thus highly simpli-
fies the model Hamiltonians used to describe the behavior
of the systems.

Model Hamiltonians and evaluation of their parameters : In
magnetic compounds only a few electrons are responsible
for the macroscopic properties. They usually belong to
open-shell orbitals and are localized energetically near the
Fermi level. The effect of those electrons that are not explic-
itly treated in the model are taken into account effectively,
that is in the value of the interactions between the model
electrons. It is thus of the highest interest to rely on model
Hamiltonians based on a reduced number of electrons inter-
acting through effective parameters. The space of determi-
nants or configurations on which the model Hamiltonian is
based is called the model space; the other determinants or
configurations form the outer-space. The extended Hub-
bard[7] Hamiltonian is the most complex model frequently
used to describe the behavior of mixed-valence compounds.
The model space is based on all the determinants formed by
spanning all the model electrons onto all the orbitals that
are taken into account. It considers the orbital energies,
electron transfer (hopping) integrals, the on-site electrostatic
repulsion and the inter-site electrostatic repulsion (between
electrons situated on different centers). It takes the follow-
ing form:

Figure 2. aPW12O40 Keggin anion and the W4O16 fragment. The oxygen
atoms occupy the corners of the pyramids. W1 and W2 pertain to edge-
sharing WO6 octahedra, W1 and W4 pertain to corner-sharing WO6 octa-
hedra. For clarity reasons, only the O shared by the WO6 octahedra and
the PO4 encapsulated clathrate, modeled by punctual charges and TIPs,
has been represented. The other atoms modeled by punctual charges and
TIPs are not represented.

Figure 3. Three 2W-based fragments. The oxygen atoms occupy the cor-
ners of the pyramids. The notations for the W atoms correspond to those
of Figure 2. Atoms modeled by punctual charges and TIPs are not repre-
sented.
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H ¼
X

i,s

ai c
y
is cis þ

X

i,j

tij
X

s

ðc y
is cjsþ c y

js cisÞ

þ
X

i

Uini"ni# þ
X

i6¼j

Vijninj

ð1Þ

where i and j run over the considered orbitals and s runs
over the projection of the electron spin; c y

is (or cis) is the
usual creation (or annihilation) operator of an electron of
spin s on site i ; ni› (or nifl) is the number operator of elec-
tron of spin a (or b) on site i ; ni = ni› + nifl is the number
operator of electrons on site i. The parameter ai corresponds
to the energy of the orbital i, tij to the hopping integral of an
electron between sites i and j, Ui to the on-site effective
electrostatic repulsion between two electrons on site i and
Vij to the inter-site effective electrostatic repulsion between
two electrons on site i and j. In idealized Keggin compound
as well as in the real structure of the particular salt studied
in this work[17] all the W ions are equivalent. Then, all the
dxy-like orbitals of the W ions (the d orbital pointing be-
tween the equatorial O ions of the octahedron) considered
in the model Hamiltonian are equivalent. Thus, ai and Ui

are identical for all the orbitals, the term aic
y
iscis acts as a

reference for all the states and thus will not be taken into
account in this work. In the case of strongly correlated sys-
tems, that is for systems where the U parameter is much
greater than the t parameters, an important reduction of the
model space is possible. Indeed, for half-filled systems, the
high value of U allows to take into account only the forms
with one electron per atomic orbital, leading to a spin
model Hamiltonian. The effects of the determinants with
double occupancy are taken into account in the effective
value of J, the magnetic coupling parameter. For systems
with one magnetic orbital per metal center a second order
perturbative derivation of the Hubbard Hamiltonian leads
to the famous Heisenberg±Dirac±van Vleck[5] model Hamil-
tonian:

H ¼ �
X

i,j

Jij S
!

i � S
!

j ð2Þ

where is the local spin operator on site i ; Jij is the magnetic
exchange integral between sites i and j. The sum over i,j is
usually restricted to nearest-neighbors magnetic sites, nn,
and eventually to next-nearest-neighbours, nnn. In the case
of hole-doped magnetic systems (less than half-filled), the
high value of U allows to limit the model space to determi-
nants involving zero or one electron per atomic orbital (or,
symmetrically, to determinants involving only one or two
electrons per atomic orbital in the more than half filled elec-
tron-doped magnetic systems). It affords the t�J model[6]

that considers both the magnetic coupling and electron
transfer, or, when the inter-site electrostatic repulsion is im-
portant, to the t�J�V model Hamiltonian written as (see
Equations (1) and (3) for notations):

H ¼
X

hi,ji
tij
X

s

ðc y
is cjsþ c y

js cisÞ�
X

hi,ji
Jij S

!
i S
!

j þ
X

i 6¼j

Vijninj

ð3Þ

The exchange transfer (e) parameter[18] has to be introduced
in systems based at least on three centers when the number
of electrons is greater than one and different from the
number of magnetic orbitals (doped-system). It corresponds
to a three-center effective parameter originated, as the mag-
netic coupling, from the interactions between the configura-
tions with zero or one electron per orbital with the determi-
nants with two electrons in the same atomic orbital. Consid-
ering three atomic orbitals i, j and k, the e between orbitals
i and j through k corresponds to the following pathways:

ji�ki $ jk�ki $ jj�ki and

ji�ki $ jk�ki $ jk�ji

involving the Slater determinants j ik≈i (an a electron in orbi-
tal i and a b electron in orbital k), j jk≈i and jkj≈i of the
model space and the jkk≈i doubly occupied determinant of
the outer-space. The first pathway acts as an additional term
to the effective electron transfer between orbitals i and j
whereas the second term consists of the transfer of an elec-
tron between orbitals i and j with a simultaneous spin ex-
change with the electron of orbital k. These interactions are
evidently possible only for two electrons of opposite spins.
As a consequence, in a system containing only two delocal-
ized electrons, the e has no effects on states with Sz=1 and
only acts on the singlet states. A ™t�J�V�e∫ model Hamil-
tonian (a t�J�V model Hamiltonian to which is added the
exchange-transfer parameter) is used to represent the
system formed by two electrons delocalized on the dxy-like
orbitals of 4W ions. The hermitic matrix representative of
this model Hamiltonian in the space of Sz=0 is presented in
Table 1. Tables 2 and 3 represent this model in a base of
configurations adapted to the spatial symmetry and spin
multiplicity.

An effective Hamiltonian procedure[19±21] was used to ex-
tract the values of the parameters of this model Hamiltoni-
an. The effective Hamiltonian satisfies the two following
properties: its eigenvalues are the eigenvalues of the exact
Hamiltonian; its eigenvectors are the projections of the ei-
genvectors of the exact Hamiltonian into the effective space,
the space handled by the effective Hamiltonian.

In the present case, the eigenvalues and eigenvectors of
the ™exact∫ Hamiltonian are those calculated with ab initio
methods and the effective space contains all the determi-
nants with zero or one electron per magnetic orbital. The
result of this procedure is a matrix representative of the ef-
fective Hamiltonian. We use the Bloch formulation[19] that
provides non-hermitic effective Hamiltonian matrices. The
identification of its elements with the elements of the matrix
representative of the model Hamiltonian directly provides
the value of all the parameters. This method requires both
the energies and the wave functions of all the states with the
largest projection onto the effective space. For the three
other systems (one electron delocalized over the 2W or 4W
based fragments, and two electrons delocalized on the 2W
based fragments) the same approach leads to much simpler
formulations. Indeed, the extraction of the parameters is
given by energy differences. A system of one electron delo-
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calized over four metal centers supports four doublets states
D1, D2, D3 and D4 which wave functions are:

YD1 ¼ jaiþ jbiþ jciþ jdi
2

YD2 ¼ jai� jbi�jciþ jdi
2

YD3 ¼ jaiþ jbi� jci� jdi
2

YD4 ¼ jai�jbiþ jci�jdi
2

where jai, jbi, jci and jdi stand for the Slater determi-
nants constructed when the extra electron is on W1, W2, W3

or W4, respectively (see Figure 2 for the numbering of the

metal centers). The relations between the t, t’, and t d elec-
tron transfer parameters and the three energy gaps between
the four doublet states are:

E12 ¼ E2 �E1 ¼ �2t0 � 2t d

E13 ¼ E3 �E1 ¼ �2t� 2t d ð4Þ

E14 ¼ E4 �E1 ¼ �2t� 2t0

where E1, E2, E3 and E4 correspond to the energies of D1,
D2, D3 and D4, respectively. These relations permit to de-
termine t, t’, and t d parameters from the calculated energies.
In the case of the delocalization of one electron over a 2W-
based fragment the transfer parameter is related to the
energy gap by the equation:

2t i ¼ EDD ¼ EDþ �ED� ð5Þ

where t i stands for t, t’ or td depending on the fragment we
are dealing with. ED+ and ED� are the energies of the dou-
blet states YD+ and YD�, respectively. The symmetry of
these two functions are those of d1+d2 and d1�d2, d1 and d2

standing for orbitals a, b, c or d. Thus, for the W2O9 frag-
ments YD+ is the antisymmetric doublet and YD� is the sym-
metric one, whereas in the W2O10 fragment YD+ is the sym-
metric doublet and YD� is the antisymmetric one.

In the case of calculations on systems with two electrons
delocalized over two metal centers, the magnetic coupling is
related to the difference:

J ¼ EST ¼ ES �ET ð6Þ

between the energies ES and ET of the singlet and triplet
states. The difference between the on-site electrostatic re-
pulsion U and the electrostatic repulsion between two differ-
ent sites is given by the difference:

U�V ¼ ES*�ET ð7Þ

between the energy ES* of the singlet excited state essential-
ly based on the configuration jaa≈i � jbb≈i and the energy ET

Table 1. t�J�V�e model Hamiltonian for the 4W-based system with two delocalized electrons. a, b, c and d are the dxy-like magnetic orbitals of the W1,
W2, W3 and W4, respectively. hab≈ j is the Slater determinant corresponding to an electron of spin a in orbital a and an electrons of spin b in orbital b. Pa-
rameter e, e’ and e d correspond to the exchange transfer parameters. Notations te, te’ and te d stand for t+e, t’+e’ and t d+e d, respectively. Parameters t, J, e
and V correspond to interactions between corner-sharing WO6 octahedra, t’, J’, e’ and V’ to interactions between edge-sharing octahedra and t d, J d, e d

and V d to interactions between next-nearest-neighbors octahedra.

jac≈i ca≈i jbd≈i jdb≈i jad≈i da≈i jbc≈i cb≈i jab≈i jba≈i cd≈i jdc≈i
hac≈ j V d J d/2 0 0 te’ e’ te’ e’ te e e te
hca≈ j J d/2 V d 0 0 e’ te’ e’ te’ e te te e
hbd≈ j 0 0 V d J d/2 te’ e’ te’ e’ e te te e
hdb≈ j 0 0 J d/2 V d e’ te’ e’ te’ te e e te
had≈ j te’ e’ te’ e’ V J’/2 0 0 te d e d te d e d

hda≈ j e’ te’ e’ te’ J’/2 V 0 0 e d te d e d te d

hbc≈ j te’ e’ te’ e’ 0 0 V J’/2 e d te d e d te d

hcb≈ j e’ te’ e’ te’ 0 0 J’/2 V te d e d te d e d

hab≈ j te e e te te d e d e d te d V’ J/2 0 0
hba≈ j e te te e e d te d te d e d J/2 V’ 0 0
hcd≈ j e te te e te d e d e d te d 0 0 V’ J/2
hdc≈ j te e e te e d te d te d e d 0 0 J/2 V’

Table 2. Hermitic matrices representative of the singlet configurations of
the t�J�V�e model Hamiltonian for the 4W-based system. Y1 = 1/2
(ac≈+ca≈+bd≈+db≈), Y2 = 1/2 (ad≈+da≈+bc≈+cb≈), Y3 = 1/2 (ab≈+ba≈+cd≈+dc≈),
Y4 = 1/2 (ad≈+da≈�bc≈�cb≈), Y5 = 1/2 (ab≈+ba≈�cd≈�dc≈), Y6 = 1/2
(ac≈+ca≈�bd≈�db≈).

Y1 Y2 Y3 Y4 Y5 Y6

Y1 V d+J d/2 2t’+4e’ 2t+4e 0 0 0
Y2 2t’+4e’ V+J/2 2t d+4e d 0 0 0
Y3 2t+4e 2t d+4e d V’+J’/2 0 0 0
Y4 0 0 0 V+J/2 0 0
Y5 0 0 0 0 V’+J’/2 0
Y6 0 0 0 0 0 V d+J d/2

Table 3. Hermitic matrices representative of the triplet configurations of
the t�J�V�e model Hamiltonian for the 4W-based system. Y7 = 1/2
(ac≈�ca≈�bd≈+db≈), Y8 = 1/2 (ab≈�ba≈�cd≈+dc≈), Y9 = 1/2 (ac≈�ca≈+bd≈�db≈),
Y10 = 1/2 (ad≈�da≈+bc≈�cb≈), Y11 = 1/2 (ad≈�da≈�bc≈+cb≈), Y12 = 1/2
(ab≈�ba≈+cd≈�dc≈).

Y7 Y8 Y9 Y10 Y11 Y12

Y7 V d�J d/2 2t 0 0 0 0
Y8 2t V’�J’/2 0 0 0 0
Y9 0 0 V d�J d/2 2t’ 0 0
Y10 0 0 2t’ V�J/2 0 0
Y11 0 0 0 0 V�J/2 2t d

Y12 0 0 0 0 2t d V’�J’/2
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of the lowest triplet state essentially based on jab≈i � jba≈i. In
conclusion, the processing of the energy and wave functions
of the low energy states of the embedded fragments allow
the evaluation of the parameters of the model Hamiltonian
suited to represent the behavior of the whole Keggin anion.

Results and Discussion

Two electrons±4W-based system : The values for the magnet-
ic coupling, electron transfer, exchange-transfer, and electro-
static repulsion parameters extracted from ab initio calcula-
tions on the system based on two electrons delocalized over
the 4W fragment are listed in Table 4. The DDCI calcula-

tions are the most accurate ones (computational details are
described in Computational Details). The two slightly differ-
ent values of the t, t’, e, and e’ parameters are due to the
non-hermiticity of the effective Hamiltonian, t d and e d are
quasi-hermitic and the other parameters are hermitic. In any
case, the intensity of the four-body terms (hac≈ jH jbd≈i for ex-
ample) remain smaller than 10 meV. Because of the nature
of the two electrons±4W-based system, it is not possible to
extract independently V, V’ and V d. However, as it is very
interesting to raise this constraint, the calculations on
dimers presented in the next subsections fulfil this goal.

The results show that the transfer parameters between
corner-sharing or edge-sharing octahedra, t and t’ parame-
ters are of the same order, about �500 meV, while that be-
tween nnn octahedra, t d, is 3±4 times smaller and of the
same sign, whatever the level of calculation. The dynamical
polarization (the difference between the MONO and
CASCI results) provides a small positive contribution to the
electron transfer parameters (about 10% of the CASCI
value) whereas the other dynamical effects have small nega-
tive contributions. The magnetic couplings between metal
centers belonging to edge-sharing and corner-sharing WO6

octahedra, J and J’, are strongly antiferromagnetic, about
�150 and �190 meV, respectively. The magnetic coupling
between nnn metal centers, J d, is negligible (the ferromag-
netic character of the J d magnetic coupling at the CASCI
level is due to the choice of the set of orbitals and the dy-
namical contributions compensate this effect). The exchange
transfer parameter between nnn W centers, e d, is large and
is only slightly affected by the dynamical contributions. The
e and e’ parameters are smaller and strongly affected by the
non-hermiticity of the Hamiltonian and by the dynamical

contributions. The electrostatic repulsions along edge-shar-
ing (V’) and corner-sharing octahedra (V) significantly differ
at the CASCI level but are almost equal at more accurate
levels of calculations. A point charge evaluation of the elec-
trostatic repulsion parameters from the distances dIII = 5.2,
dIV = 3.8, and dV=3.5 ä between the W ions gives
V d = VIII �2770 meV, V = VIV �3790 meV and V’ =

VV �4110 meV, that is V’ � V�320 meV and V’ � V d �
1340 meV. These values are similar to those extracted from
CASCI calculations, 204 and 1388 meV, respectively. But the
important role of the dynamical effects makes these evalua-
tions too simple to be accurate. A deeper analysis based on
simple considerations of the structure of the Keggin anion
would explain why the screening between W belonging to

edge-sharing octahedra is stron-
ger than that between W be-
longing to corner-sharing or
nnn octahedra.

A second-order perturbative
evaluation of the exchange
transfer parameters permits to
check the coherency of the re-
sults. Due to the non-hermitici-
ty of the effective Hamiltonian,
the perturbative evaluation
gives two relations for each pa-
rameter:

e ¼ �2
t0 � t d
U�V 0 and e ¼ �2

t0 � t d
U �V d

e0 ¼ �2
t � t d
U �V

and e0 ¼ �2
t � t d

U�V d

e d ¼ �2
t � t0

U�V 0 and e
d ¼ �2

t � t0
U �V

where the potential exchange transfer hab jH jcai, hac jH j
dai and hab jH jdai are neglected. These equations explain
why e d is quasi-hermitic (V �V’, which means that the de-
nominators of the equations concerning e d are almost equal)
whereas e and e’ are strongly non-hermitic (V�V d �
V’�V d�0.8 eV, thus the denominators of their equations
significantly differ). But this perturbative development is
too rough to explain the changes of the sign of e and e’ re-
ported in Table 4 and the potential exchange transfer pa-
rameters should be taken into account. If we consider that
the differences between V, V’ and V d are small compared
with the differences with U, all the denominators of all
above relations are equal and the differences between the
exchange transfer parameters arise from the numerators (e
/ {t’ ¥ t d}, e’ / {t ¥ t d}, and e d / {t ¥ t’}). The ratio of about 3±4
between t or t’ and t d explains why e d is much larger than
the two other exchange transfer parameters. Furthermore,
assuming that V �V’ and t � t’ in the evaluation of e d, one
obtains:

Table 4. Values in meV of the parameters of the t�J�V�e model extracted from calculations involving two
electrons delocalized over the 4W-based fragment. P.C. are punctual charges calculations.

t t’ t d J J’ J d e e’ e d V’�V V’�V d

P.C. ± ± ± ± ± ± ± ± ± +320 +1340
CASCI �515 �531 �116 �81 �109 +20 �1/+1 �1/+3 �49 +204 +1388
MONO �451/�462 �470/�479 �104 �140 �164 �0.7 �4/+12 �3/+11 �53 �5 +764
DDCI2 �461/�475 �485/�500 �116 �152 �183 +0.4 �5/+14 �4/+13 �53 +18 +756
DDCI �490/�503 �509/�522 �154 �151 �190 +2.1 �8/+16 �5/+16 �67 +65 +854
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e d � �2
t 2

U �V
� �2

t0 2

U �V 0

Comparing this relation to the
usual estimation of the Ander-
son mechanisms[22] of the mag-
netic coupling parameters:

J ¼ � 4t 2

U �V

J0 ¼ � 4t0 2

U �V 0

one obtains e d �J/2 �J’/2 that
is coherent with the values reported in Table 4. Finally, it is
important to point out that the values of e and e’ cannot be
accurately estimated by calculations on the chosen 4W-
based fragment. Indeed, the main contributions for e and e’
come from interactions with atoms out of the fragment (the
third W atoms of the triads) that can be perturbatively esti-
mated to:

e ¼ �2
t 2

U�V
and

e0 ¼ �2
t0 2

U �V 0

Thus, e and e’ should have values similar to e d, that is e�
e’�e d��70 meV.

Comparisons between results obtained from calculations on
W2O9, W2O10 and W4O16 fragments : The interest of the 2W-
based systems arise from the possibility not only to perform
much quicker calculations than the one on the 4W-based
systems, but also to better understand the electronic interac-
tions occurring in these clusters by answering the following
questions: How the transfer of a delocalized electron is af-
fected by the presence of a second delocalized electron?
Are the interactions local? Furthermore, even if it is usually
assumed that embedded fragment calculations provide very
accurate values of the electron transfer and magnetic cou-
pling parameters, the present section is also devoted to
check the accuracy of these calculations: Are dimers large
enough? Are the TIPs and punctual charges adapted to re-
produce the effects of the crystal on the fragment?

Table 5 summarizes the evaluations of the electron trans-
fer and magnetic coupling parameters from calculations on
the W2O9, W2O10, and W4O16 with one or two delocalized
electrons. As for the system containing two delocalized elec-
trons, the DDCI calculations on the system based on one
electron delocalized over four metal centers are performed
on a restricted set of dedicated orbitals (see Computational
Details).

Whatever the level of calculations, the values extracted
for the parameters t, t’, J and J’ are not significantly affected,
neither by the number of delocalized electrons, nor by the
size of the fragment. We argue that the differences obtained
for J’ at the CASCI or CASSCF level on the 2W- and 4W-

based fragments are just a consequence of the choice of the
set of MOs. Some important consequences of these results
have to be emphasized:

* the atoms that pertain to the 4W-based fragment but not
to the 2W-based fragments are properly modeled by
TIPs and punctual charges in the 2W-based calculations.
The stability of the electron transfer and magnetic cou-
pling parameters when the size of the fragments is
changed means that punctual charges and TIPs repro-
duce accurately the effects of the ions outside those frag-
ments.

* the 4W-based fragment allows to consider the effect of
single and double excitations on ions that do not belong
to the centers involved in the interaction process (for ex-
ample, the excitation of an electron from a closed shell
on the W4 ion to its apical oxygen during the electron
transfer between W1 and W2). This kind of ™secondary∫
excitations are not possible in the 2W-based fragment.
Thus, the similar values between the parameters derived
from the 2W and 4W fragments prove that electron
transfers and super-exchange are local phenomena (i.e. ,
they essentially imply the two metal centers involved in
the interaction and the oxygen ions of their coordination
spheres, the electrons of the rest of the crystal only
having an averaged influence).

* the transfer of a delocalized electron is not significantly
affected by the presence of another delocalized electron
on a neighbor center.

* the evaluation of the magnetic coupling between two
electrons is very similar when the electrons are forced to
pertain to a dimer or when they are allowed to delocal-
ized over the 4W-based fragment.

On the contrary, the evaluation of t d or J d are more sensi-
tive to the choice of the fragment. It is not a consequence of
any physical effect but of the construction of the 2W-based
fragment. Indeed, whereas in the fragment based on edge
and corner-sharing octahedra all the nearest-neighbors
atoms of the bridging oxygen are in the fragment, in the
fragment based on nnn octahedra this is not the case (see
Figure 3). That is why the W2O10 fragment does not provide
accurate values of the nnn electron transfer or magnetic
coupling, and it is useless to perform DDCI calculations on

Table 5. Comparison of the values [meV] of the electron transfer and super-exchange parameters extracted
from the calculations on the 4W-based fragment and on the three dimeric fragments with one or two delocal-
ized electrons.

System t t’ t d J J’ J d

CASCI 2e�/4W �515 �531 �116 �81 �109 +21
CASSCF 2e�/2W ± ± ± �79 �93 �0.7
CASSCF 1e�/4W �510 �551 �89 ± ± ±
CASSCF 1e�/2W �510 �560 �80 ± ± ±
CASPT2 2e�/2W ± ± ± �171 �208 �2.2
CASPT2 1e�/4W �443 �479 �125 ± ± ±
CASPT2 1e�/2W �445 �490 �102 ± ± ±
DDCI 2e�/4W �490/�503 �509/�522 �154 �151 �190 +2.1
DDCI 2e�/2W ± ± ± �178 �219 �3.2
DDCI 1e�/4W �504 �542 �140 ± ± ±
DDCI 1e�/2W �467 �507 ± ± ±
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this model. Anyway, all calculations agree to predict a quite
important electron transfer between nnn W ions.

Calculation of the electrostatic repulsions : Table 6 presents
the evaluation of the difference between the on-site electro-
static repulsion (identical for all the metal centers which are
symmetrically equivalent), and the electrostatic repulsion
between two centers. The calculations are performed on the
system based on two electrons delocalized over two metal
centers at the CASSCF, CASPT2 and DDCI levels.

The electrostatic effective repulsion parameters V and V’
slightly differ at the CASSCF level. This difference is very
similar to that obtained using a point charge evaluation
(320 meV). At the DDCI level, V and V’ are almost equal,
in very good agreement with the values extracted from cal-
culations on the 4W-based fragment. The two PW2O14 frag-
ments formed by the PO4 clathrate and the WO6 octahedra
corresponding to the W ions farthest pairs (distances dII=

6.3 and dI=7.3 ä) should permit an evaluation of the cou-
lombic repulsion U�VII and U�VI from Equation (7).
DDCI calculations performed on a dedicated set of MOs
gives U�VI=6265 meV, a result that does not change sig-
nificantly with the choice of the set of MOs. However, con-
vergence problems in the RASSCF procedure did not
permit to obtain information about U�VII. A very rough
evaluation of VII from point charge calculations gives
VII�VI �0.3 eV. A combination of the values of all the
electrostatic repulsion parameters permits to draw the
scheme of energy differences between VI, VII, VIII, VIV, and
VV represented in Figure 4.

Conclusion on the ab initio calculations part : As a conclu-
sion on the ab initio calculations part, we have shown how
the punctual charges and TIPs are suited to model the ef-
fects on the considered fragments of the rest of the crystal.
We have also proven that dimer fragment calculations
permit an accurate evaluation of the t, t’, J, J’, V, V’. We can
also reasonably assume that the on-site electrostatic effec-
tive repulsion is accurately calculated on these fragments.
However, calculations on 4W-based fragments are necessary
to get reasonable values for t d, J d and V d.

A Model Hamiltonian for the whole Keggin anion

This section is devoted to understand the origin of the dia-
magnetic properties of the two-electron reduced Keggin poly-
oxoanion. For this purpose, we used the model Hamiltonian

proposed in ref. [23] which describes the behavior of the
whole Keggin anion reduced by two electrons. This Hamil-
tonian is based on a chain-like spin coupling scheme that
represents the interactions between two spins delocalized
over 12 magnetic centers. It takes into account all the pa-
rameters described in the Section on Model Hamiltonians
and evaluation of their parameters. The energies of the
Hamiltonian, obtained from an exact diagonalization of the
corresponding matrices, can be compared with the energies
that could be measured on a two-electron-reduced Keggin
anion. The use of the ab initio value of all the microscopic
parameters permits to evaluate the energy gap between the
singlet ground state and the lowest triplet state. It is about
0.8 eV. This very large value prevent any significant thermal
population of the triplet state even at room temperature.
Our results are in complete agreement with the diamagnetic
properties of the two electron reduced Keggin anions. Nev-
ertheless, the origin of this very large energy gap has to be
explained as strong electrostatic repulsions maintain the de-
localized ™extra∫ electrons far one from each other. In order
to discriminate the influence of each kind of microscopic pa-
rameters onto the singlet-to-triplet gap, they are included
step by step in the model Hamiltonian and the energy of the
lowest states are extracted. The changes of the singlet-to-
triplet energy gap when a parameter is taken into account
or not permits to evaluate its importance on the diamagnetic
properties of the material.

Influence of electrostatic repulsion : The large value of the
VV, VIV, VIII electrostatic repulsions versus VII and VI permits
to draw a very simple model Hamiltonian. It is built from
configurations based on two electrons separated by distan-
ces dI or dII. Super-exchange mechanisms between W centers
separated by distances dI or dII are almost zero and the
other parameters of such a model are the electron transfer

Table 6. Values [meV] of the electrostatic repulsion parameters extracted
from calculations for nn W ions based fragments. The CASCI and DDCI
calculations are performed on the set of orbitals optimized for the triplet
state. P.C. are punctual charge calculations.

U�V’ V’�V

P.C. ± 320
CASSCF 4922 379
CASPT2 4214 102
DDCI 3629 �8 Figure 4. Scheme of the differences between the inter-site electrostatic re-

pulsion. Energy differences represented by plain arrows are obtained
from ab initio calculations and are quite accurate. The energy difference
represented by dashed arrows is a rough estimation obtained from punc-
tual charges calculations.
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between nearest-neighbors metal centers (t and t’). The diag-
onalization of the model Hamiltonian using the values ex-
tracted in this work (VII�VI = 0.3 eV, t = t’ = 0.5 eV) pre-
dicts an singlet-to-triplet energy gap of 0.3 eV. Thus, this
simple model contains about 40% of the mechanisms re-
sponsible of the magnetic coupling between the two delocal-
ized electrons. The next step is to check the importance of
the very poor accuracy of the evaluation of VI and VII. For
that purpose, the VV, VIV, VIII parameters are introduced in
the model whereas t d, J, J’ and J d remain neglected (their ef-
fects is checked in the next subsections) and t = t’ = 0.5 eV.
The variations of the gap with the values of VI and VII are
evaluated from two series of calculations:

* in Figure 5, VI, VIII, VIV and VV are fixed to the calculated
values and VII varies from VI to VIII ;

* in Figure 6, VIII, VIV and VV are fixed to the calculated
values, the ratio VIII�VII/VII�VI is kept constant and
the differences VII�VI varies from 0 (i.e. , VI = VII =

VIII) to VII�VI = j t j �500 meV, a value about 1.6
times larger than the ab initio one.

The evolution of the low lying levels shows that in a wide
range of VI and VII values, the singlet-to-triplet energy gap
is very large. This gap is unchanged whatever the value of
VII when VI and VIII are kept constant (Figure 5). Simultane-
ous changes of VII and VI (Figure 6) slightly affect the sin-
glet-to-triplet energy gap. It is increased by only 0.09 eV
when VI = VII = VIII versus the value assuming the calcu-
lated electrostatic repulsions VII�VI = 0.3 eV. Thus, the
limited accuracy in the evaluation of VI and VII does not
change the interpretation we can make about the origin of
the diamagnetism in this mixed valence cluster. Taking into
account all the electrostatic repulsion parameters, neglecting
the super exchange mechanisms and td, the singlet-to-triplet
energy gap is of 0.56 eV, a 70% of the actual value. More-
over, the configurations where the delocalized electrons are
separated by distances dIII, dIV or dV should not be neglected
as they contribute to about 30% to the total singlet-to-trip-
let energy gap.

Influence of diagonal transfer : The influence of the diagonal
transfer parameter is evaluated by fixing t, t’ and all the
electrostatic repulsions to their ab initio values and calculat-
ing the low lying levels when t d varies in a large range of
values (see Figure 7). The value t d = 0 corresponds to the
assumptions made in the previous subsection, while the ver-
tical dashed line corresponds to the value determined by ab
initio methods. The singlet-to-triplet energy gap rapidly
varies with t d. For negative t d this gap increases with the ab-
solute value of t d, while the reverse situation occurs for posi-
tive t d values. For t d = �140 meV, the gap is of 0.77 eV, a
40% larger than for t d = 0, and a 96% of the actual value
(when J and J’ are not neglected).

Influence of exchange parameters : Finally, the influence of
the exchange parameters on the effective coupling between
the two delocalized electrons is reported in the correlation
diagram shown in Figure 8. This plot represents the evolu-

tion of the lowest spin states of the Keggin anion with J and
J’ in the particular case where J = J’. The values of all the
other parameters are those evaluated from ab initio calcula-

Figure 5. Evolution of the low lying energy levels with VII. The values for
t, t’, VI, VIII, VIV and VV are determined by ab initio calculations. t d, J and
J’ are supposed to be 0. Solid lines correspond to singlet states, dashed
lines to triplet states. The vertical dashed line corresponds to the value
determined by ab initio methods.

Figure 6. Evolution of the low lying levels with VI and VII. The values for
t, t’, VV�VIII and VIV�VIII are determined by ab initio calculations. t d, J
and J’ are supposed to be 0. Solid lines correspond to singlet states,
dashed lines to triplet states. The vertical dashed line corresponds to the
value determined by ab initio methods.
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tions. As expected an antiferromagnetic (negative) exchange
interaction leads to an increase in the singlet-to-triplet
energy gap. However, this effect is quite small. In our case,
even if J and J’ are strongly antiferromagnetic, the resulting
gap only increases about 0.03 eV with respect to the value
at J = J’ = 0, to a total of 0.80 eV, the most accurate evalu-
ation of this work. For a value of J as large as t this gap
would be only increased by a 8% in the most favourable
case VV �VIV.

Conclusions

The method used in this work provides for the first time a
complete and definite explanation of the diamagnetic prop-
erties of these high nuclearity mixed-valence clusters. A sin-
glet±triplet energy gap of 0.80 eV (6450 cm�1) has been esti-
mated. By combining an ab initio evaluation of the interac-
tions between the electrons delocalized over the Keggin
anion with the use of these parameters in a model Hamilto-
nian of the whole anion, it has been clearly proved that the
diamagnetism of the two-electron reduced Keggin anion is
essentially a consequence of the electron transfer processes
occurring between the nearest W centers, and of the Cou-
lombic repulsion between the delocalized electrons. Dealing
with electron transfer, the major contributions arise from
the edge-sharing and corner-sharing transfer parameters, t
and t’, although the presence of an unexpected quite large
diagonal transfer, td, which involves next-nearest-neighbor
interactions, affords an important additional mechanism to
stabilize the singlet ground spin state. Additionally, it has

been shown that the electrostatic Coulombic repulsion also
plays a key role in the stabilization of the singlet ground
spin state. In turn, it has been found that the contribution of
a multiroute superexchange mechanism, that was initially in-
voked to explain the diamagnetism in these clusters, is quite
negligible. The diamagnetism of two-electron reduced
Keggin anion is explained by the solely evaluation of the
very large singlet±triplet energy gap. However, the hybrid
approach of this paper is general and useful for a better un-
derstanding of the magnetic properties of a large range of
mixed-valence polyoxometalate compounds. Indeed, the
parametrization of the Hubbard model Hamiltonian by the
same set of microscopic interactions evaluated from ab
initio methods has a much wider prediction capability which
extends to magnetic susceptibility, magnetization, heat ca-
pacity or even inelastic neutron scattering experiments.

Computational Details

Ab initio methods : The physics of mixed-valence compounds permit to
differentiate the orbitals into three sets following their contributions to
the magnetic properties: i) the orbitals that are essentially closed shell or-
bitals; ii) the orbitals that essentially remain empty; iii) the magnetic orbi-
tals. Following these distinctions, the complete active space self consistent
field (CASSCF)[24] procedure defines three sets of orbitals: i) the inactive
orbitals which are doubly occupied orbitals; ii) the virtual orbitals that
are empty; iii) the active orbitals, whose occupations are allowed to
change, support the active electrons. The complete active space (CAS) is
then defined, for a given number of active electrons, as the set of all the
determinants allowed by the previous occupation rules. For a state of a
given spatial symmetry and spin multiplicity, the CASSCF procedure
consists of the simultaneous self-consistent optimisation of all the molec-

Figure 7. Evolution of the low lying levels with t d. The values for t, t’ and
all the electrostatic repulsions are those obtained from ab initio calcula-
tions. J and J’ are supposed to be 0. Solid lines correspond to singlet
states, dashed lines to triplet states. The vertical dashed line corresponds
to the value determined by ab initio methods.

Figure 8. Evolution of the energy of the low lying energy levels with the
exchange parameters. The value of t, t’, t d and all the electrostatic repul-
sions are those obtained from ab initio calculations. Solid lines corre-
spond to singlet states, dashed lines to triplet states. The vertical dashed
line corresponds to the value determined by ab initio methods.

¹ 2004 Wiley-VCH Verlag GmbH&Co. KGaA, Weinheim www.chemeurj.org Chem. Eur. J. 2004, 10, 4041 ± 40534050

FULL PAPER N. Suaud, E. Coronado et al.

www.chemeurj.org


ular orbitals (MOs) and of the coefficients of the wave function devel-
oped onto the CAS. It treats exactly the interactions between the active
electrons in the mean field of the remaining electrons. That way, the
static polarization and a small fraction of the correlation of the active
electrons are variationally taken into account. This procedure can be ex-
tended to the ™State Average CASSCF∫ procedure that consists in the
optimisation of the wave functions of various states (of the same spatial
symmetry and spin multiplicity) and of a common set of MOs. The com-
plete active space configuration interaction (CASCI) procedure consists,
for a given set of MOs, in the optimisation of the coefficients of the wave
function of a state developed onto the CAS. The CASPT2[25] calculations
permit a second-order perturbative evaluation of the dynamical polarisa-
tion and correlation effects. The MONO, DDCI2 and DDCI methods[26]

are variational calculations of part of the dynamical effects. The MONO
takes into account the dynamical polarisation of the determinants of the
CAS. It is obtained by the diagonalization of the determinantal space
containing the CAS and all the single excitations onto the CAS, corre-
sponding to the following determinants: i) excitations inside the CAS;
ii) one hole (one electron is excited from an inactive orbital to an active
orbital); iii) one particle (one electron is excited from an active orbital to
a virtual orbital); iv) one hole + one particle (one electron is excited
from an inactive orbital to an active orbital and one electron is excited
from an active orbital to a virtual orbital). The DDCI2 space adds to the
previous space the double excitations involving utmost two inactive or
virtual orbitals, that is two holes or two particles. Finally, the DDCI
space includes the DDCI2 space and the following excitations: ™two-
holes + one-particle∫ and ™one-hole + two-particles∫. The DDCI space
includes all the determinants that participate, at a second-order of pertur-
bation, to the energy differences between all the states of the CAS.
Other contributions of these excitations appear at the third order of per-
turbation as polarization of the orbitals of the oxo ligands that allow the
electron transfer from one metal to the other. The double excitations
that do not belong to the DDCI space correspond to the ™two-holes +

two-particles∫ excitations. They are evidently the most numerous when
the number of inactive and virtual orbitals is large compared with the
number of active orbitals. At the second order of perturbation their
effect is only to shift the energy of all the states of the CAS by the same
quantity when a common set of MOs is used for the calculations of all
the states. Thus, the DDCI procedure takes into account variationally the
main differential dynamical effects and is the most accurate method used
in this work. The last computational detail that has to be stressed con-
cerns the selection of the inactive and virtual orbitals included in the cal-
culations of the dynamical effects. Indeed, the occupied orbitals from
which the excitations are originated, and the orbitals to which they end
can be selected. This permits to neglect those excitations that are sup-
posed to give the smallest contributions. The inactive (or virtual) orbitals
that are not allowed to participate in the excitations are named frozen
(or deleted) orbitals. For CASPT2 calculations, the selection is usually
done taking into account an energetic criterion since a perturbative ap-
proach predicts that the higher the energy gap between the orbitals in-
volved in the excitation is, the smaller the contribution to the wave func-
tion and the smaller the correction to the energy. For variational calcula-
tions, a method to select the frozen and deleted orbitals recently pro-
posed[27] has proved its high efficiency. The criterion in this case is the dif-
ference of participation of the orbitals to the CI of the states: the
inactive or virtual orbitals that are equivalently occupied in all states can
be neglected whereas those whose occupation changes significantly have
to be taken into account into the CI. The ™energy difference dedicated
orbitals∫ are obtained by the difference of the density matrices of the
states calculated at the MONO level. See ref. [27] for more details. The
CASSCF and CASPT2 are part of the MOLCAS suite of programs.[28]

The MONO, DDCI2 and DDCI results are obtained with the CASDI
code.[29]

The sets of MOs : For those systems formed by one or two electrons delo-
calized over the 2W-based fragments, the CASPT2 procedure is per-
formed on the CASSCF set of orbitals. The MONO, DDCI2 and DDCI
are performed on the set of orbitals optimized for the triplet state in the
case of calculations involving two delocalized electrons, and on the set of
MOs of the ground doublet state in the case of calculations involving
only one delocalized electron. In any case, we check that the DDCI re-
sults obtained with different sets of MOs do not change significantly the

values of the parameters. For the system formed by one electron delocal-
ized over the 4W-based fragments, the CASPT2 calculations are per-
formed on the set of MOs optimized for each of the doublet state at the
CASSCF level. In the case of the system formed by two electrons delo-
calized over the 4W-based fragments, the CASCI calculations are per-
formed on the set of MOs optimized at the State Average CASSCF level
for the lowest singlet state and the two other singlet states of the same
symmetry. The projections of these three states onto the CAS are combi-
nations of the following configurations (see the first matrix of Table 2):

C1 ¼ a�cþ c�aþb�dþ d�b
2

C2 ¼ a�bþb�aþ c�dþd�c
2

C3 ¼ a�dþd�aþ b�cþ c�b
2

These configurations exhibit the three kinds of electrostatic repulsion be-
tween the delocalized electrons (V d for C1, V’ for C2 and V for C3). Thus,
the set of orbitals optimized for these three states should be well suited
to calculate all the states. Anyway, the DDCI procedure exhibit only a
small dependency with the set of MOs. For technical reasons, the very
large number (460) of orbitals of the system based on four tungsten cen-
ters prevents to perform any calculation with MONO, DDCI2 or DDCI
methods. The CASPT2 method can handle such a large number of orbi-
tals but accurate CASPT2 calculations need a CASSCF set of orbitals for
each state. The extraction of parameters of the two-electrons±4W system
is possible only if a common set of MOs is used for all the calculations.
Thus, it is not possible to extract accurate values of the parameters of the
two-electrons±4W system from CASPT2 calculations. Nevertheless, a
combination of CASPT2 and DDCI methods can provide accurate evalu-
ations of the parameters from calculations on the two-electrons±4W-
based systems. The problem is to obtain a reduced set of orbitals that
contains the main part of the dynamical effects and that permits DDCI
calculations. This set of MOs is obtained with a two-step procedure:
i) the first step consists of deletion a large number of virtual orbitals so
that to be able to perform MONO calculations; ii) second, the calculation
of the energy difference dedicated orbitals and the selection of a set of
MOs that provides the main dynamical contributions and is small enough
to permit the DDCI calculations. To check the effects of the rough sim-
plifications introduced in the first step, the CASPT2 method is used.
Indeed, even if accurate CASPT2 calculations impose the use of orbitals
optimized for each state, a CASPT2 calculation on the same set of orbi-
tals with a different number of deleted orbitals provides an evaluation of
the dynamical energetic contribution of the deleted orbitals. Thus, two
calculations are performed on the set of MOs optimized at the state aver-
age CASSCF level for the lowest singlet state and for the two other sin-
glet states of the same symmetry: firstly, the reference where all the vir-
tual orbitals are allowed to participate to the excitations is evaluated. A
second calculation is performed on a reduced set of 248 MOs, where 212
virtual orbitals are deleted on an energetic criterion. The two resulting
spectra are represented in Figure 9. They compare very well, proving the
small participation of the deleted orbitals. Thus, the space of the single
and double excitations based on the 460�212=248 orbitals contains the
main contributions to the energy differences between the states and accu-
rate evaluations of the parameters can be expected from calculations on
this reduced set of orbitals.

This reduced set of orbitals allows MONO and DDCI2 calculations to be
performed, but still the DDCI space remains very large, about 25î106

determinants. Even if this calculation is not impossible, the use of a se-
lected set of energy difference dedicated orbitals reduces the DDCI
space by about 55% without any significant loss of precision on the
values of the parameters as presented in Table 7. As we can see, the
values of the parameters do not depend of the set of MOs; the error due
to the use of the energy difference dedicated orbitals is almost zero for
any kind of parameter.

The aim of the energy difference dedicated orbitals method is to concen-
trate the dynamical effects into a reduced set of orbitals. These MOs are
obtained from MONO calculations. They are thus suited to reproduce
the energy and wave functions of the states (and thus the parameters) ob-

Chem. Eur. J. 2004, 10, 4041 ± 4053 www.chemeurj.org ¹ 2004 Wiley-VCH Verlag GmbH&Co. KGaA, Weinheim 4051

Spin Coupling in Mixed-Valence Keggin Polyoxometalates 4041 ± 4053

www.chemeurj.org


tained at the MONO level of calculations on the complete set of orbitals.
However, it is interesting to notice that even if the DDCI2 space contains
excitations out of the MONO space, the DDCI2 results on the selected
dedicated orbitals and on the complete set of orbitals are very similar.
The set of selected dedicated orbitals are well suited for both MONO
and DDCI2 calculations and we can reasonably assume that they are also
well suited for the DDCI calculations. Thus, we can trust in the DDCI
values presented in Table 4.

Atomic basis sets : In all the calculations, the inner-core electrons
([1s22s22p63s23p64s23d104p65s24d104f14] for the W atoms and [1s2] for the O
atoms) are represented by effective core potential (ECPs). The outer-
core and valence electrons are represented using a 13s10p9d5f primitive
basis set contracted to 3s3p4d2f for the W atoms, a 5s6p1d primitive
basis set contracted to 2s4p1d for all the O atoms exempt for the apical
oxygen atom for which the use of a stronger contraction to 1s2p1d was
checked to have no significant effects. The exact expression of the basis
sets and ECPs can be found in reference.[30]
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